Next-generation sequencing-based analysis of homologous recombination repair gene variant in ovarian cancer

Heliyon. 2024 Jan 5;10(2):e23684. doi: 10.1016/j.heliyon.2023.e23684. eCollection 2024 Jan 30.

Abstract

Background: Ovarian cancer is the leading cause of death from gynecological malignancies. Investigating the HRR-related gene status, notably BRCA1/2 in different regions and populations is of great significance for formulating accurate target therapy.

Methods: We collected 124 ovarian cancer cases from the Affiliated Hospital of.Qingdao University, detected the genomic alteration of 32 genes by NGS, including.19 HRR-related genes, 9 proto-oncogenes and 4 tumor suppressor genes. Clinicopathological characteristics, variants, clinical significance, and correlation with prognosis were analyzed.

Results: The incidence of HRR-related gene mutation was 59.68 % and no statistical significance was found with multiple clinicopathological characteristics. BRCA1/2 (27.42 %) were the most frequent mutated HRR genes. 23 (18.55 %) cases harbored gBRCA1/2 mutation, with all BRCA1 mutations were pathogenic/likely pathogenic and 2 cases of BRCA2 mutation was variant of uncertain significance. Somatic BRCA1/2 mutations were found in 12 (9.68 %) cases, and sBRCA1/2 had a higher frequency in less common ovarian cancer than high-grade serous carcinoma. HRR-related gene mutation status was associated with better prognosis than HRR wild-type.

Conclusions: Somatic BRCA1/2 mutation has higher incidence in less common ovarian cancer. HRR gene mutation status is an independent prognosis factor in ovarian cancer. Clarifying the HRR gene status is important for the selection of target therapy as well as the evaluation of prognosis.

Keywords: BRCA1/2 mutation; Generation sequencing; Homologous recombination repair; Next; Ovarian cancer; Prognosis.