Breaking the symmetric spiral spectrum distribution of a Laguerre-Gaussian beam propagating in moderate-to-strong isotropic atmospheric turbulence

Opt Express. 2024 Jan 15;32(2):1701-1714. doi: 10.1364/OE.508140.

Abstract

We demonstrate that the spiral spectrum (also known as orbital angular momentum spectrum) of a Laguerre-Gaussian (LG) beam with topological charge (TC) l is asymmetrically broadened propagating through moderate-to-strong atmospheric turbulence, even the statistics of turbulence is isotropic. This phenomenon is quite different from that predicted in weak turbulence where the spiral spectrum of a disturbed LG beam is symmetric with respect to its TC number l. An explicit analytical expression of the spiral spectrum of the LG beam with l = 1 is derived based on the extend Huygens-Fresnel integral and quadratic approximation, which is used to illustrate the transition scenarios of the spiral spectrum from symmetry to asymmetry in weak-to-strong turbulence. The physical mechanism for the asymmetric spiral spectrum in moderate-to-strong turbulence is thoroughly discussed. Our results are confirmed by the multi-phase screen numerical simulations and are consistent with the experimental results reported in Phys. Rev. A105, 053513 (2022)10.1103/PhysRevA.105.053513 and Opt. Lett.38, 4062 (2013)10.1364/OL.38.004062.