Periodically tunable multimode soliton pulsation in a spatiotemporal mode-locked fiber laser

Opt Express. 2024 Jan 29;32(3):4427-4435. doi: 10.1364/OE.510841.

Abstract

Multimode fiber lasers have become a new platform for investigating nonlinear phenomena since the report on spatiotemporal mode-locking. In this work, the multimode soliton pulsation with a tunable period is achieved in a spatiotemporal mode-locked fiber laser. It demonstrates that the pulsation period drops while increasing the pump power. Moreover, it is found that different transverse modes have the same pulsation period, asynchronous pulsation evolution and different dynamical characteristics through the spatial sampling technique and the dispersive Fourier transform technique. To further verify the experimental results, we numerically investigate the influences of the gain and the loss on the pulsation properties. It is found that within a certain parameter range, the pulsation period drops and rises linearly with the increase of the gain and the loss, respectively. The obtained results contribute to understanding the formation and regulating of soliton pulsations in fiber lasers.