The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis

World J Surg Oncol. 2024 Feb 1;22(1):40. doi: 10.1186/s12957-024-03321-9.

Abstract

Background: The application of machine learning (ML) for identifying early gastric cancer (EGC) has drawn increasing attention. However, there lacks evidence-based support for its specific diagnostic performance. Hence, this systematic review and meta-analysis was implemented to assess the performance of image-based ML in EGC diagnosis.

Methods: We performed a comprehensive electronic search in PubMed, Embase, Cochrane Library, and Web of Science up to September 25, 2022. QUADAS-2 was selected to judge the risk of bias of included articles. We did the meta-analysis using a bivariant mixed-effect model. Sensitivity analysis and heterogeneity test were performed.

Results: Twenty-one articles were enrolled. The sensitivity (SEN), specificity (SPE), and SROC of ML-based models were 0.91 (95% CI: 0.87-0.94), 0.85 (95% CI: 0.81-0.89), and 0.94 (95% CI: 0.39-1.00) in the training set and 0.90 (95% CI: 0.86-0.93), 0.90 (95% CI: 0.86-0.92), and 0.96 (95% CI: 0.19-1.00) in the validation set. The SEN, SPE, and SROC of EGC diagnosis by non-specialist clinicians were 0.64 (95% CI: 0.56-0.71), 0.84 (95% CI: 0.77-0.89), and 0.80 (95% CI: 0.29-0.97), and those by specialist clinicians were 0.80 (95% CI: 0.74-0.85), 0.88 (95% CI: 0.85-0.91), and 0.91 (95% CI: 0.37-0.99). With the assistance of ML models, the SEN of non-specialist physicians in the diagnosis of EGC was significantly improved (0.76 vs 0.64).

Conclusion: ML-based diagnostic models have greater performance in the identification of EGC. The diagnostic accuracy of non-specialist clinicians can be improved to the level of the specialists with the assistance of ML models. The results suggest that ML models can better assist less experienced clinicians in diagnosing EGC under endoscopy and have broad clinical application value.

Keywords: Artificial intelligence; Endoscopy; Gastric cancer; Machine learning; Neural networks.

Publication types

  • Meta-Analysis
  • Systematic Review
  • Review

MeSH terms

  • Endoscopy
  • Humans
  • Machine Learning
  • Stomach Neoplasms* / diagnosis