Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east coast of Bay of Bengal

Environ Res. 2024 May 1:248:118304. doi: 10.1016/j.envres.2024.118304. Epub 2024 Jan 30.

Abstract

The complexity of micro-tidal inlets arises from the combined action of littoral drift and tidal range on their stability. Consequently, understanding and evaluating their stability poses a significant challenge. This study aims to shed some insight on the assessment of inlet stability by employing Delft 3D model. The stability of the inlet between the ocean and estuary relies on the balance between the longshore transport rate and the spring tidal prism. Disrupting this equilibrium results in the closure of the inlets. The movement of sediments in the surf zone is primarily driven by longshore velocity, which acts as the driving force for littoral drift, which is estimated using Delft 3D wave model. The longshore transport rate is estimated by employing empirical relationships and numerical codes based on the obtained driving force. Subsequently, the stability of the inlet is assessed based on these estimations. The spring tidal prism refers to the discharge of water flowing into the ocean from inlets and estuaries. Flow velocity is determined using Delft 3D flow model. The input data for nearshore circulation resulting from waves and currents is primarily collected through field measurements and data collected from Indian National Centre for Ocean Information Services (INCOIS). For the current study, Muttukadu (12°47'13″N, 80°15'01″E) inlet, Kovalam along the East Coast of the Indian Peninsula is investigated by assessing its seasonal variations. This study contributes to the management of marine biological ecology, the expansion of small-scale artisanal fishing, the promotion of water sports-related tourism, the advancement of fishing harbor development, and the execution of coastal engineering projects.

Keywords: Delft 3D; Inlet; Sediment transport rate; Stability; Tidal prism.

MeSH terms

  • Bays*
  • Environmental Monitoring / methods
  • Estuaries*
  • Seasons
  • Water

Substances

  • Water