Radical Cations of Bilayer Nanographenes

Org Lett. 2024 Feb 9;26(5):1017-1021. doi: 10.1021/acs.orglett.3c04084. Epub 2024 Jan 31.

Abstract

Chemical redox reactions of bilayer nanographene complexes, (C96H24Ar6)2 (Ar = 2,6-dimethylphenyl) (12) and (C42H12R6)2 (R = tBu) (22), were investigated. Upon two-electron oxidation reactions, 12 and 22 were transformed to radical cations 122•+ and 222•+, respectively. SQUID and EPR measurements on 122•+ and 222•+ indicate that they possess an open-shell singlet ground state with antiferromagnetic interactions between two layers. The shortest separation distance between bilayers in 222•+ (3.30 Å) is shorter than that in 22 (3.44 Å) and 22•+ (3.40 Å), illustrating stronger interaction upon loss of electrons.