Enhancing Interfacial Capacitance by Boron Doping in Vertically Porous Carbon Toward High-Performance AC Filtering Electrochemical Capacitors

Small. 2024 Jan 31:e2310523. doi: 10.1002/smll.202310523. Online ahead of print.

Abstract

Electrochemical capacitors (ECs) show great perspective in alternate current (AC) filtering once they simultaneously reach ultra-fast response and high capacitance density. Nevertheless, the structure-design criteria of the two key properties are often mutually incompatible in electrode construction. Herein, it is proposed that combining vertically oriented porous carbon with enhanced interfacial capacitance (Ci ) can efficiently solve this issue. Theoretically, the density function theory calculation shows that the Ci of a carbon electrode can be enhanced by boron doping due to the corresponding compact induced charge layer. Experimentally, the vertical-oriented boron-doped graphene nanowalls (BGNWs) electrodes, whose Ci is enhanced from 4.20 to 10.16 µF cm-2 upon boron doping, are prepared on a large scale (480 cm2 ) using a hot-filament chemical vapor deposition technique (HFCVD). Owing to the high Ci and vertically oriented porous structure, BGNWs-based EC has a high capacitance density of 996 µF cm-2 with a phase angle of - 79.4° at 120 Hz in aqueous electrolyte and a high energy density of 1953 µFV2 cm-2 in organic electrolyte. As a result, the EC is capable of smoothing 120 Hz ripples for 60 Hz AC filtering. These results provide enlightening insights on designing high-performance ECs for high-frequency applications.

Keywords: AC filtering; boron-doped carbon; electrochemical capacitor; interfacial capacitance; vertical structure.