Computational Procedure for Predicting Excipient Effects on Protein-Protein Affinities

J Chem Theory Comput. 2024 Feb 13;20(3):1479-1488. doi: 10.1021/acs.jctc.3c01197. Epub 2024 Jan 31.

Abstract

Protein-protein interactions lie at the center of many biological processes and are a challenge in formulating biological drugs, such as antibodies. A key to mitigating protein association is to use small-molecule additives, i.e., excipients that can weaken protein-protein interactions. Here, we develop a computationally efficient model for predicting the viscosity-reducing effect of different excipient molecules by combining atomic-resolution MD simulations, binding polynomials, and a thermodynamic perturbation theory. In a proof of principle, this method successfully ranks the order of four types of excipients known to reduce the viscosity of solutions of a particular monoclonal antibody. This approach appears useful for predicting the effects of excipients on protein association and phase separation, as well as the effects of buffers on protein solutions.

MeSH terms

  • Antibodies, Monoclonal* / chemistry
  • Excipients* / chemistry
  • Viscosity

Substances

  • Excipients
  • Antibodies, Monoclonal