Germanene saturable absorber for mode-locked operation in an all-fiber laser with multiple dispersion environments

Appl Opt. 2024 Jan 20;63(3):865-873. doi: 10.1364/AO.513713.

Abstract

In this paper, a high-quality germanene-polyvinyl alcohol (PVA) saturable absorber (SA) with a modulation depth of 3.05% and a saturation intensity of 17.95M W/c m 2 was prepared. Stable conventional mode-locking and harmonic mode-locking (HML) were achieved in germanene-based Er-doped fiber lasers (EDFL) using dispersion management techniques. In a cavity with a net dispersion value of -0.22p s 2, the conventional soliton had a center wavelength of 1558.2 nm, a repetition frequency of 19.09 MHz, and a maximum 3 dB spectrum bandwidth of 3.5 nm. The highest repetition frequencies achieved in cavities with net dispersion values of -2.81p s 2, -1.73p s 2, and -1.09p s 2 were 9.48 MHz, 12.75 MHz, and 12.10 MHz for HML, respectively. Furthermore, the effects of dispersion, power, and the polarization state on HML were systematically investigated. Our research results fully demonstrate the capability of germanene as an optical modulator in generating conventional mode-locked and harmonic mode-locked solitons. This provides meaningful references for promoting its application in ultrafast fiber lasers.