Equivalent circuit model of the traveling wave electrode for lithium niobate thin film Mach-Zehnder modulators

Appl Opt. 2024 Jan 20;63(3):617-623. doi: 10.1364/AO.509361.

Abstract

We propose an equivalent circuit model of the traveling wave electrode for lithium niobate thin film (TFLN) Mach-Zehnder modulators, in which the distributed capacitance and conformal mapping techniques are applied to calculate the microwave refractive index, microwave loss, and characteristic impedance. Their accuracies are verified by comparing with the results of the finite element method, and the relative errors are less than 3.282%, 1.776%, and 5.334%, respectively. The influence of the electrode's structural parameters on the modulation performances is analyzed, and a 3 dB modulation bandwidth around 84 GHz with an 8-mm-long traveling wave electrode is obtained.