Efficacy of auxin-inducible protein degradation in C. elegans tissues using different auxins and TIR1-expressing strains

bioRxiv [Preprint]. 2024 Jan 19:2024.01.16.575916. doi: 10.1101/2024.01.16.575916.

Abstract

The auxin-inducible degradation system has emerged as a powerful tool to deplete proteins of interest in cells and tissues of various model organisms, including C. elegans 2-5 . Here, we present a detailed protocol to perform AID-driven spatiotemporal depletion of specific proteins in C. elegans tissues. First, we introduced the AID degron and a fluorescent reporter at two conserved proteins: (a) the transcription factor CFI-1 (human ARID3), which is expressed in the nucleus of multiple C. elegans neurons and head muscle cells 6,7 , and (b) the broadly expressed translation initiation factor Y47D3A.21 (human DENR) that localizes in the cytoplasm. Second, we provide a step-by-step guide on how to generate C. elegans strains suitable for AID-mediated protein (CFI-1 and DENR) depletion. Third, we find that the degree of CFI-1 and DENR depletion in C. elegans tissues is comparable upon treatment with either natural auxin (indole-3-acetic acid (IAA) or a water-soluble synthetic auxin analog (K-NAA). Last, we compare the degree of AID-mediated CFI-1 depletion in C. elegans neurons when the transport inhibitor response 1 (TIR1), component of the SCF ubiquitin ligase complex, is provided in neurons or all somatic cells. Altogether, this protocol provides side-by-side comparisons of different auxins and TIR1-expressing lines. Such comparisons may benefit future studies of AID-mediated protein depletion in C. elegans .

Graphical abstract: Image provided as pdf (together with Figures).

Highlights: Efficient protein depletion in C. elegans tissues upon treatment with either natural or synthetic auxins. Pansomatic TIR1 expression leads to efficient depletion of CFI-1 and DENR.Panneuronal TIR1 expression leads to neuron-specific, yet variable CFI-1 depletion.The AID system is compatible with fluorescence microscopy, Western blotting and behavioral assays.

Publication types

  • Preprint