FARMS: Framework for Animal and Robot Modeling and Simulation

bioRxiv [Preprint]. 2024 Mar 4:2023.09.25.559130. doi: 10.1101/2023.09.25.559130.

Abstract

The study of animal locomotion and neuromechanical control offers valuable insights for advancing research in neuroscience, biomechanics, and robotics. We have developed FARMS (Framework for Animal and Robot Modeling and Simulation), an open-source, interdisciplinary framework, designed to facilitate access to neuromechanical simulations for modeling, simulation, and analysis of animal locomotion and bio-inspired robotic systems. By providing an accessible and user-friendly platform, FARMS aims to lower the barriers for researchers to explore the complex interactions between the nervous system, musculoskeletal structures, and their environment. Integrating the MuJoCo physics engine in a modular manner, FARMS enables realistic simulations and fosters collaboration among neuroscientists, biologists, and roboticists. FARMS has already been extensively used to study locomotion in animals such as mice, drosophila, fish, salamanders, and centipedes, serving as a platform to investigate the role of central pattern generators and sensory feedback. This article provides an overview of the FARMS framework, discusses its interdisciplinary approach, showcases its versatility through specific case studies, and highlights its effectiveness in advancing our understanding of locomotion. In particular, we show how we used FARMS to study amphibious locomotion by presenting experimental demonstrations across morphologies and environments based on neural controllers with central pattern generators and sensory feedback circuits models. Overall, the goal of FARMS is to contribute to a deeper understanding of animal locomotion, the development of innovative bio-inspired robotic systems, and promote accessibility in neuromechanical research.

Publication types

  • Preprint