Pyrrole-Based Fully Non-fused Acceptor for Efficient and Stable Organic Solar Cells

Angew Chem Int Ed Engl. 2024 Apr 8;63(15):e202400565. doi: 10.1002/anie.202400565. Epub 2024 Feb 19.

Abstract

Organic solar cells (OSCs) are still suffering from the low light utilization and unstable under ultraviolet irradiation. To tackle these challenges, we design and synthesize a non-fused acceptor based on 1-(2-butyloctyl)-1H-pyrrole as π-bridge unit, denoted as GS70, which serves as active layer in the front-cell for constructing tandem OSCs with a parallel configuration. Benefiting from the well-complementary absorption spectra with the rear-cell, GS70-based parallel tandem OSCs exhibit an improved photoelectron response over the range between 600-700 nm, yielding a high short-circuit current density of 28.4 mA cm-2. The improvement in light utilization translates to a power conversion efficiency of 19.4 %, the highest value among all parallel tandem OSCs. Notably, owing to the intrinsic stability of GS70, the manufactured parallel tandem OSCs retain 84.9 % of their initial PCE after continuous illumination for 1000 hours. Overall, this work offers novel insight into the molecular design of low-cost and stability non-fused acceptors, emphasizing the importance of adopting a parallel tandem configuration for achieving efficient light harvesting and improved photostability in OSCs.

Keywords: Non-fused acceptor; Organic solar cells; Parallel tandem cells; Power conversion efficiency; Pyrrole.