Prediction and biological analysis of yeast VDAC1 phosphorylation

Arch Biochem Biophys. 2024 Mar:753:109914. doi: 10.1016/j.abb.2024.109914. Epub 2024 Jan 28.

Abstract

The mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), is the major permeability pathway for the flux of metabolites and ions between cytosol and mitochondria. In yeast, several Por1 phosphorylation sites have been identified. Protein phosphorylation is a major modification regulating a variety of biological activities, but the potential biological roles of Por1 phosphorylation remains unaddressed. In this work, we analysed 10 experimentally observed phosphorylation sites in yeast Por1 using bioinformatics tools. Two of the residues, T100 and S133, predicted to reduce and increase pore permeability, respectively, were validated using biological assays. In accordance, Por1T100D reduced mitochondrial respiration, while Por1S133E phosphomimetic mutant increased it. Por1T100A expression also improved respiratory growth, while Por1S133A caused defects in all growth conditions tested, notably in fermenting media. In conclusion, we found phosphorylation has the potential to modulate Por1, causing a marked effect on mitochondrial function. It can also impact on cell morphology and growth both in respiratory and, unpredictably, also in fermenting conditions, expanding our knowledge on the role of Por1 in cell physiology.

Keywords: Mitochondria; Phosphorylation; VDAC; Yeast.

MeSH terms

  • Animals
  • Mammals / metabolism
  • Mitochondria / metabolism
  • Phosphorylation
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Voltage-Dependent Anion Channels / metabolism

Substances

  • Voltage-Dependent Anion Channels
  • Saccharomyces cerevisiae Proteins