Chronic low salinity stress rescued masculinization effect in farmed Cynoglossus semilaevis population

Mar Pollut Bull. 2024 Mar:200:116074. doi: 10.1016/j.marpolbul.2024.116074. Epub 2024 Jan 29.

Abstract

Salinity, being an indispensable abiotic factor crucial for the survival of marine organisms, has demonstrated diverse alterations globally in response to the current trend of global warming. In this study, the effect of chronic low salinity stress on teleosts' sex differentiation was investigated using Cynoglossus semilaevis, an economically important fish with both genetic and environmental sex determination system. The cultivation experiment was conducted employing artificially simulated seawater of 20 ppt and ambient sea water of 30 ppt to rear juveniles C. semilaevis. Throughout the experiment, the growth performance was assessed and the histology of gonadal development was examined, a significantly lower masculinization rate was observed in LS group. To gain further insights, transcriptome analysis was conducted using raw reads obtained from 53 libraries derived from gonads of 55 days post fertilization (dpf) and 100 dpf juveniles in both LS and CT groups. GO/KEGG enrichment were further proceeded, Terms and pathways involved in reproduction ability, germ cell proliferation, immune function, steroid metabolism etc., were illuminated and a possible crosstalk between HPI and HPG axis was proposed. WGCNA was conducted and two hub genes, hspb8-like and Histone H2A.V were exhibited to be of great significance in the changes of masculinization rate. Our findings provided solid reference for sex differentiation study of GSD + ESD species in a constantly changing ocean environment, as well as practice guiding significance for the environmental management for the culture of C. semilaevis.

Keywords: Cynoglossus semilaevis; Gonadal histology; Growth; Masculinization; Salinity; Transcriptome.

MeSH terms

  • Animals
  • Flatfishes* / metabolism
  • Flounder*
  • Gene Expression Profiling
  • Gonads