Identifying Fast and Slow-Acting Antimalarial Compounds of Pandemic Response Box Against Blood-Stage Culture of Plasmodium falciparum 3D7

Curr Microbiol. 2024 Jan 30;81(3):81. doi: 10.1007/s00284-023-03601-9.

Abstract

The evolving clinical resistance in Plasmodium falciparum and the spike in malarial cases after the COVID-19 outbreak has triggered a search for new antimalarials effective against multi-drug-resistant P. falciparum strains. In this study, we assessed the timing of action, either fast or slow-acting of 13 potent compounds of Pandemic Response Box (PRB) against blood-stage Pf3D7 strain by SYBR Green-I assay. The asynchronous culture of Pf3D7 was exposed to varying concentrations of 13 compounds, and IC50 values were determined at 12, 24, 48, 72, and 96 h. We identified four fast-acting compounds (MMV000008, MMV1593541, MMV020752, MMV396785) with rapid-growth inhibitory activity having IC50 values ≤ 0.3 µM at 12 and 24 h. Similarly, we determined nine slow-acting compounds (MMV159340, MMV1634492, MMV1581558, MMV689758, MMV1593540, MMV394033, MMV019724, MMV000725, MMV1557856) having IC50 values ≤ 0.5 µM at 72 and 96 h. Furthermore, the stage-specific action of the two most potent fast-acting compounds (MMV1593541 and MMV020752) against rings, trophozoites, and schizonts at 48 h of exposure revealed that ring-stage parasites showed reduced IC50 values compared to mature stage forms. Therefore, our study demonstrates for the first time the identification of the most potent fast and slow-acting compounds from PRB against blood-stage infection, suggesting its utility in clinics and considering it as a partner drug in combination therapies.

MeSH terms

  • Antimalarials* / pharmacology
  • Biological Assay
  • Blood Culture
  • Pandemics
  • Plasmodium falciparum

Substances

  • Antimalarials