Unveiling the Potential of Pt Nanoparticle-Decorated PEDOT:PSS Membranes for Efficient Gas Separation

ACS Appl Mater Interfaces. 2024 Feb 14;16(6):7700-7708. doi: 10.1021/acsami.3c15763. Epub 2024 Jan 30.

Abstract

In the dynamic landscape of industrial processes, membrane technology offers a paradigm shift beyond energy-intensive separation techniques, exemplifying a progressive leap toward sustainability. In this regard, highly flexible and uniform poly(3,4-ethylenedioxythiophene)polystyrenesulfonate (PEDOT:PSS)-engineered membranes at a reduced thickness have been fabricated on track-etched poly(ethylene terephthalate) (PET) substrates. The membranes were functionalized and embedded with platinum nanoparticles (Pt NPs) having a higher affinity toward H2 gas. The materials and fabricated membranes were characterized by using high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM) techniques for morphological and structural analysis. FTIR and Raman characterizations were performed to study the characteristic bonds. The uniformity and quantification of Pt nanoparticle binding were tested through inductively coupled plasma mass spectrometry (ICP-MS) studies and FESEM with EDS mapping. The gas separation performance was studied using H2, N2, and CO2 gases in pure and mixed (H2/CO2 in 50:50) states. It was observed that the modified membrane showed a 116% increment in H2 permeability and 82 and 107% increment in H2/CO2 and H2/N2 selectivity values with pure gas, while a 121% increment in H2 permeability and 156% increment in H2/CO2 selectivity using mixed gas. The separation performance in pure and mixed gas states with repeated experiments conspicuously highlighted their prospective viability as prime contenders for gas separation applications.

Keywords: PEDOT:PSS; gas separation; hydrogen; membrane engineering; perm-selectivity.