COX2 expression plays a role in spinal cord injury-induced neuropathic pain

Neurosci Lett. 2024 Feb 16:823:137663. doi: 10.1016/j.neulet.2024.137663. Epub 2024 Jan 28.

Abstract

Background context: Elucidating the mechanism of neuropathic pain (NeP) is crucial as it can result in motor dysfunction and negatively impact quality of life in patients with spinal cord injury (SCI). Although it has been reported that cyclooxygenase 2 (COX2) is involved in NeP in rat models of peripheral nerve injury and that COX2 inhibitors can alleviate NeP, these mechanisms after SCI have not been fully investigated.

Purpose: The purpose is to investigate whether the thoracic SCI affects the expression of mRNAs for COX1 and COX2 in the lumbar spinal cord, and the effect of COX2 inhibitor on its behavior.

Study design: Male Sprague-Dawley (SD) rats underwent thoracic (T10) spinal cord contusion injury using an Infinite Horizon (IH) impactor device. SCI rats received COX2 inhibitors (50 μg/day) on days 5 and 6 after SCI.

Methods: Male SD rats underwent T10 laminectomy under mixed anesthesia, and IH impactors were applied to the same site to create a rat SCI model. Rats that underwent only laminectomy were designated as sham. Lumbar spinal cord at the L4-5 level was harvested at 3, 5, 7, 14, and 28 days after SCI, and COX2 and COX1 were quantified by reverse-transcription PCR (RT-PCR). COX2 expression, expression site, and expression time were determined by immunohistochemistry (IHC) and in situ hybridization histochemistry (ISHH) at the same time points. The expression site and time of COX2 expression were also examined at the same time point by ISHH. On 5th and 6th day after SCI, saline and COX2 inhibitor (50 μg/day) were administered into the subarachnoid space as a single dose, and the two groups were compared in terms of mechanical withdrawal latency using the dynamic plantar esthesiometer, which is an automated von Frey-type system.

Results: COX2 was significantly increased at 5 and 7 days after SCI, but no significant difference in COX1 was observed after SCI by RT-PCR. ISHH targeting COX2 showed clear expression of COX2 in spinal cord vascular endothelial cells at 5 and 7 days after SCI. COX2 expression was almost abolished at day 14 and 28. Behavioral experiments showed that pain was significantly improved from day 2 after COX2 inhibitor administration compared to the saline group, with improvement up to day 14 after SCI, but no significant difference was observed after day 21.

Conclusions: The present findings suggest that thoracic SCI increased COX2 in vascular endothelial cells in the lumbar spinal cord and that the administration of COX2 inhibitor significantly alleviated mechanical hypersensitivity of the hind-paw following the thoracic SCI. Therefore, endothelial cell derived COX2 in the lumbar spinal cord may be involved in the induction of neuropathic pain in the SCI model rats.

Clinical significance: The findings in the present study regarding the induction of endothelial COX2 and the effect of its inhibitor on the mechanical hypersensitivity suggest that endothelial cell-derived COX2 is one of the focuses for the treatment for neuropathic pain in the acute phase of SCI.

Keywords: COX2; COX2 inhibitor; In situ hybridization; Neuropathic pain; Spinal cord injury.

MeSH terms

  • Animals
  • Cyclooxygenase 2 / metabolism
  • Cyclooxygenase 2 Inhibitors / pharmacology
  • Cyclooxygenase 2 Inhibitors / therapeutic use
  • Endothelial Cells / metabolism
  • Humans
  • Hyperalgesia / metabolism
  • Male
  • Neuralgia* / metabolism
  • Quality of Life
  • Rats
  • Rats, Sprague-Dawley
  • Spinal Cord / metabolism
  • Spinal Cord Injuries* / metabolism

Substances

  • Cyclooxygenase 2
  • Cyclooxygenase 2 Inhibitors
  • Ptgs2 protein, rat