Biosorption and Bioprotective Potential of Levilactobacillus brevis in Mice Challenged by Lead-Induced Oxidative Stress

Biol Trace Elem Res. 2024 Jan 29. doi: 10.1007/s12011-024-04080-0. Online ahead of print.

Abstract

Lead (Pb) poisoning is a widespread issue in both developed and developing countries that poses a significant public health challenge. Our study aimed to explore the impact of Levilactobacillus brevis strains on inflammatory and antioxidant gene expression in the liver and brain of mice exposed to oxidative stress caused by Pb. We began by evaluating Pb absorption by Levilactobacillus brevis strains (ARKA-CH-1 (A1) and ARKA-CH-6 (A6)) using the inductively coupled plasma mass spectrometry (ICP-MS) in vitro to identify the most effective strain. We then divided four groups of BALB/c mice into control and experimental groups and treated them for 30 days. The control group received a normal diet, while the experimental groups consumed lead-containing water (0.6 g/L) with or without Levilactobacillus brevis strains. Following the experiments, we collected blood samples to test liver markers, antioxidant enzymes, and immunoglobulins. We also used real-time PCR to examine the expression of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) genes. The results showed that the A1 strain was the most effective in absorbing Pb. The Pb exposure led to an increase in liver enzyme values and a decrease in antioxidant enzyme activity and immunoglobulin factors. However, the combination of A1 and A6 strains had a greater effect in reducing inflammatory enzymes and increasing antioxidant enzymes. Furthermore, we observed a significant increase in iNOS gene expression and a notable decrease in SOD gene expression with Pb consumption. However, the combination of A1 and A6 strains had a synergistic effect in reducing iNOS and increasing SOD gene expression. In conclusion, Levilactobacillus brevis A1 strain alone or in combination with the A6 strain could be a promising strategy to mitigate the oxidative stress symptoms in mice challenged by lead-induced toxicity.

Keywords: Biodetoxification; Heavy metals; Intestinal bioremediation; Lead; Probiotics.