Axenic green microalgae for the treatment of textile effluent and the production of biofuel: a promising sustainable approach

World J Microbiol Biotechnol. 2024 Jan 29;40(3):81. doi: 10.1007/s11274-023-03863-2.

Abstract

An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.

Keywords: Biodiesel; Bioethanol; Biomass; Chlorella sorokiniana ASK25; Mass balance; Phycoremediation; Phylogenetic analysis; Wastewater.

MeSH terms

  • Biofuels
  • Chlorella*
  • Fatty Acids
  • Microalgae*
  • Textiles

Substances

  • Biofuels
  • Fatty Acids