A Comprehensive Metagenome Study Identifies Distinct Biological Pathways in Asthma Patients: An In-Silico Approach

Biochem Genet. 2024 Jan 29. doi: 10.1007/s10528-023-10635-y. Online ahead of print.

Abstract

Asthma is a multifactorial disease with phenotypes and several clinical and pathophysiological characteristics. Besides innate and adaptive immune responses, the gut microbiome generates Treg cells, mediating the allergic response to environmental factors and exposure to allergens. Because of the complexity of asthma, microbiome analysis and other precision medicine methods are now widely regarded as essential elements of efficient disease therapy. An in-silico pipeline enables the comparative taxonomic profiling of 16S rRNA metagenomic profiles of 20 asthmatic patients and 15 healthy controls utilizing QIIME2. Further, PICRUSt supports downstream gene enrichment and pathway analysis, inferring the enriched pathways in a diseased state. A significant abundance of the phylum Proteobacteria, Sutterella, and Megamonas is identified in asthma patients and a diminished genus Akkermansia. Nasal samples reveal a high relative abundance of Mycoplasma in the nasal samples. Further, differential functional profiling identifies the metabolic pathways related to cofactors and amino acids, secondary metabolism, and signaling pathways. These findings support that a combination of bacterial communities is involved in mediating the responses involved in chronic respiratory conditions like asthma by exerting their influence on various metabolic pathways.

Keywords: Alpha diversity; Asthma; Gene enrichment; Metagenomics; Pathway analysis; Taxonomic classification.