Design, Synthesis, Nematicidal, and Fungicidal Activities of Novel Azo and Azoxy Compounds

J Agric Food Chem. 2024 Feb 7;72(5):2473-2481. doi: 10.1021/acs.jafc.3c04847. Epub 2024 Jan 29.

Abstract

Bursaphelenchus xylophilus (B. xylophilus) and Meloidogyne are parasitic nematodes that have caused severe ecological and economic damage in pinewood and crops, respectively. Jietacins (jietacin A and B) were found to have excellent biological activity against B. xylophilus. Based on our tremendous demand for chemicals against B. xylophilus, a novel scaffold based on the azo and azoxy groups was designed, and a series of compounds were synthesized. In the bioassay, Ia, IIa, IIc, IId, and IVa exhibited higher activity against B. xylophilus in vitro than avermectin (LC50 = 2.43 μg·mL-1) with LC50 values of 1.37, 1.12, 0.889, 1.56, and 1.10 μg·mL-1, respectively. Meanwhile, Ib, Ic, IIc, and IVa showed good inhibition effects against Meloidogyne in vivo at the concentrations of 80 and 40 μg·mL-1 with inhibition rates of 89.0% and 81.6%, 95.6% and 75.7%, 96.3% and 41.2%, and 86.8% and 78.7%, respectively. In fungicidal activity in vitro, IIb and IVa exhibited excellent effect against Botryosphaeria dothidea with the inhibition of 82.59% and 85.32% at the concentration of 10 μg·mL-1, while the inhibition of Ia was 83.16% against Rhizoctonia solani at the concentration of 12.5 μg·mL-1. Referring to the biological activity against B. xylophilus, a 3D-QASR model was built in which the electron-donating group and small group at the 4-phenylhydrazine were favorable for the activity. In general, the novel azoxy compounds, especially IIc possess great potential for application in the prevention of B. xylophilus.

Keywords: 3D-QASR; Bursaphelenchus xylophilus; Meloidogyne; azoxy; jietacins; nematicidal activity.

MeSH terms

  • Animals
  • Antinematodal Agents / chemistry
  • Pinus* / parasitology
  • Tylenchida*
  • Tylenchoidea*

Substances

  • Antinematodal Agents