Calcium-enriched carbon nanoparticles loaded with indocyanine green for near-infrared fluorescence imaging-guided synergistic calcium overload, photothermal therapy, and glutathione-depletion-enhanced photodynamic therapy

J Mater Chem B. 2024 Feb 14;12(7):1846-1853. doi: 10.1039/d3tb02690f.

Abstract

Combining phototherapy with other treatments has significantly advanced cancer therapy. Here, we designed and fabricated calcium-enriched carbon nanoparticles (Ca-CNPs) that could effectively deplete glutathione (GSH) and release calcium ions in tumors, thereby enhancing the efficacy of photodynamic therapy (PDT) and the calcium overload effect that leads to mitochondrial dysfunction. Due to the electrostatic interaction, π-π stacking interaction, multiple hydrogen bonds, and microporous structures, indocyanine green (ICG) was loaded onto the surface of Ca-CNPs with a high loading efficiency of 44.7 wt%. The obtained Ca-CNPs@ICG can effectively improve the photostability of ICG while retaining its ability to generate singlet oxygen (1O2) and undergo photothermal conversion (Ca-CNPs@ICG vs. ICG, 45.1% vs. 39.5%). In vitro and in vivo experiments demonstrated that Ca-CNPs@ICG could be used for near-infrared fluorescence imaging-guided synergistic calcium overload, photothermal therapy, and GSH depletion-enhanced PDT. This study sheds light on the improvement of 1O2 utilization efficiency and calcium overload-induced mitochondrial membrane potential imbalance in tumor cells.

MeSH terms

  • Calcium
  • Carbon / pharmacology
  • Humans
  • Indocyanine Green / chemistry
  • Indocyanine Green / pharmacology
  • Nanoparticles* / chemistry
  • Neoplasms* / therapy
  • Optical Imaging
  • Photochemotherapy*
  • Photothermal Therapy

Substances

  • Indocyanine Green
  • Calcium
  • Carbon