CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

ACS Catal. 2023 Jul 7;13(13):9018-9024. doi: 10.1021/acscatal.3c01984. Epub 2023 Jun 22.

Abstract

Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate ligands, demonstrating the importance of QD surface chemistry.

Keywords: C–C bond formation; cross-electrophile coupling; nanoplatelet; nickel; photochemistry; quantum dot.