Synergistic Interfacial Effect of Ru/Co3 O4 Heterojunctions for Boosting Overall Water Splitting

Small. 2024 Jan 28:e2309633. doi: 10.1002/smll.202309633. Online ahead of print.

Abstract

Low-cost bifunctional electrocatalysts capable of efficiently driving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are needed for the growth of a green hydrogen economy. Herein, a Ru/Co3 O4 heterojunction catalyst rich in oxygen vacancies (VO ) and supported on carbon cloth (RCO-VO @CC) is prepared via a solid phase reaction (SPR) strategy. A RuO2 /Co9 S8 @CC precursor (ROC@CC) is first prepared by loading Co9 S8 nanosheets onto CC, following the addition of RuO2 nanoparticles (NPs). After the SPR process in an Ar atmosphere, Ru/Co3 O4 heterojunctions with abundant VO are formed on the CC. The compositionally optimized RCO-VO @CC electrocatalyst with a Ru content of 0.55 wt.% exhibits very low overpotential values of 11 and 253 mV at 10 mA cm-2 for HER and OER, respectively, in 1 m KOH. Further, a low cell voltage of only 1.49 V is required to achieve a current density of 10 mA cm-2 . Density functional theoretical calculations verify that the outstanding bifunctional electrocatalytic performance originates from synergistic charge transfer between Ru metal and VO -rich Co3 O4 . This work reports a novel approach toward a high-efficiency HER/OER electrocatalyst for energy storage and conversion.

Keywords: Co3O4; Ru; heterojunctions; overall water splitting; solid phase reaction.