Development of Efficient Brain Age Estimation Method Based on Regional Brain Volume From Structural Magnetic Resonance Imaging

Psychiatry Investig. 2024 Jan;21(1):37-43. doi: 10.30773/pi.2023.0183. Epub 2024 Jan 22.

Abstract

Objective: We aimed to create an efficient and valid predicting model which can estimate individuals' brain age by quantifying their regional brain volumes.

Methods: A total of 2,560 structural brain magnetic resonance imaging (MRI) scans, along with demographic and clinical data, were obtained. Pretrained deep-learning models were employed to automatically segment the MRI data, which enabled fast calculation of regional brain volumes. Brain age gaps for each subject were estimated using volumetric values from predefined 12 regions of interest (ROIs): bilateral frontal, parietal, occipital, and temporal lobes, as well as bilateral hippocampus and lateral ventricles. A larger weight was given to the ROIs having a larger mean volumetric difference between the cognitively unimpaired (CU) and cognitively impaired group including mild cognitive impairment (MCI), and dementia groups. The brain age was predicted by adding or subtracting the brain age gap to the chronological age according to the presence or absence of the atrophy region.

Results: The study showed significant differences in brain age gaps among CU, MCI, and dementia groups. Furthermore, the brain age gaps exhibited significant correlations with education level and measures of cognitive function, including the clinical dementia rating sum-of-boxes and the Korean version of the Mini-Mental State Examination.

Conclusion: The brain age that we developed enabled fast and efficient brain age calculations, and it also reflected individual's cognitive function and cognitive reserve. Thus, our study suggested that the brain age might be an important marker of brain health that can be used effectively in real clinical settings.

Keywords: Brain reserve; Cognitive dysfunction; Healthy ageing; Magnetic resonance imaging.