Fucoidan/chitosan hydrogels as carrier for sustained delivery of platelet-rich fibrin containing bioactive molecules

Int J Biol Macromol. 2024 Mar;262(Pt 1):129651. doi: 10.1016/j.ijbiomac.2024.129651. Epub 2024 Jan 25.

Abstract

Platelet-rich fibrin (PRF), derived from human blood, rich in wound healing components, has drawbacks in direct injections, such as rapid matrix degradation and growth factor release. Marine polysaccharides, mimicking the human extracellular matrix, show promising potential in tissue engineering. In this study, we impregnated the self-assembled fucoidan/chitosan (FU_CS) hydrogels with PRF obtaining PRF/FU_CS hydrogels. Our objective was to analyze the properties of a hydrogel and the sustained release of growth factors from the hydrogel that incorporates PRF. The results of SEM and BET-BJH demonstrated the relatively porous nature of the FU_CS hydrogels. ELISA data showed that combining FU_CS hydrogel with PRF led to a gradual 7-day sustained release of growth factors (VEGF, EGF, IL-8, PDGF-BB, TGF-β1), compared to pure PRF. Histology confirmed ELISA data, demonstrating uniform PRF fibrin network distribution within the FU_CS hydrogel matrix. Furthermore, the FU_CS hydrogels revealed excellent cell viability. The results revealed that the PRF/FU_CS hydrogel has the potential to promote wound healing and tissue regeneration. This would be the first step in the search for improved growth factor release.

Keywords: Chitosan; Fucoidan; Growth factors; Hydrogels; Marine polysaccharide; Platelet-rich fibrin.

MeSH terms

  • Chitosan* / metabolism
  • Delayed-Action Preparations / pharmacology
  • Humans
  • Hydrogels / metabolism
  • Hydrogels / pharmacology
  • Intercellular Signaling Peptides and Proteins / metabolism
  • Platelet-Rich Fibrin* / metabolism
  • Polysaccharides / metabolism
  • Polysaccharides / pharmacology

Substances

  • Chitosan
  • fucoidan
  • Delayed-Action Preparations
  • Polysaccharides
  • Intercellular Signaling Peptides and Proteins
  • Hydrogels