Prediction of riverine daily minimum dissolved oxygen concentrations using hybrid deep learning and routine hydrometeorological data

Sci Total Environ. 2024 Mar 25:918:170383. doi: 10.1016/j.scitotenv.2024.170383. Epub 2024 Jan 26.

Abstract

Dissolved oxygen (DO) depletion is a severe threat to aquatic ecosystems. Hence, using easily available routine hydrometeorological variables without DO as inputs to predict the daily minimum DO concentration in rivers has huge practical significance in the watershed management. The daily minimum DO concentrations at the outlet of the Oyster River watershed in New Hampshire, USA, were predicted by a set of deep learning neural networks using meteorological data and high-frequency water level, water temperature, and specific conductance (CTD) data measured within the watershed. The dependent variable, DO concentration, was measured at the outlet. From April 2013 to March 2018, the dataset was separated into training, validation, and test portions with a ratio of 5:3:3. A Long Short-Term Memory (LSTM) model and a hybrid Convolutional Neural Networks (CNN-LSTM) model were trained and evaluated for predicting the daily minimum DO concentration. The hybrid CNN-LSTM model exhibited the better predictive stability but the comparable accuracy (the mean R2 value = 0.865) compared with the pure LSTM model (the mean R2 value = 0.839). The model performance (both the stability and accuracy) was improved by aggregating the input data frequency from 15 min of raw data to 24 h. Likewise, the modeling performance didn't benefit from including 'forecasted' meteorological data at the predicted time step in the input dataset. This study provided an efficient and low-cost approach to predict the water quality in rivers and streams to realize the scientific watershed management.

Keywords: CNN; DO forecasting; Data frequency; LSTM; Neural network architecture.