New insight into the functional group mechanism and structure-activity relationship of the complexation between DOM and Cr(III) in landfill leachate

J Hazard Mater. 2024 Mar 15:466:133210. doi: 10.1016/j.jhazmat.2023.133210. Epub 2023 Dec 10.

Abstract

Widespread landfills represent a significant source of groundwater contamination. Due to the unique and diverse nature of dissolved organic matter (DOM) in landfill leachate, the interaction between DOM and heavy metals, along with its quantitative evaluation, remains unknown. Consequently, we collected ten samples from various landfill types to serve as representatives for a comprehensive investigation of the mechanism involving functional groups and Cr(III) through the establishment of a quantitative structure-activity relationship (QSAR). We employed ESI FT-ICR MS, (MW) 2D-COS, and DFT calculations for this purpose. Our findings indicate that DOM from landfill leachate contains a higher proportion of CHON molecules on intensity compared to those from natural sources. The maximum complexation capacity was determined by the proportion of proteins (69%), normalized carbon average oxidation state (16%), double bond equivalence (8%), and the number of oxygen atoms (7%) in landfill leachate DOM. Besides, N-containing groups such as N = O and C-N in landfill leachate DOM with lower humification, can exhibit stronger affinities than COOH, ArOH, CO, and polysaccharide C-O groups, which are typically identified as dominant sites in natural DOM. A QSAR model incorporating four parameters demonstrated an impressive accuracy rate of 98.8%, underscoring its reliability in predicting the complexation potential of different landfill leachate DOM with Cr(III).

Keywords: Complexation; DOM-Cr(III); Groundwater; Landfill; Quantitative model.