Investigating local field tuning Fermi resonance of CS2 by Raman spectroscopy and DFT calculations

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 5:310:123881. doi: 10.1016/j.saa.2024.123881. Epub 2024 Jan 14.

Abstract

In the spectroscopic study of polyatomic molecules, Fermi resonance (FR) is a vibrational coupling and energy transfer phenomenon that widely exists intra- and intermolecular. In particular, the FR coupling between the fundamental mode ν1 and the doubling mode 2ν2 of the CS2 molecule has attracted extensive research. In this work, we investigate the effect of local field on tuning the FR of CS2. By analyzing the Raman spectra of CS2 mixed with methanol and ethanol with different mole fractions, the results indicated that weak HBs interactions in binary solutions can be reflected by the linear frequency shift of the C-H bond vibrations (in methanol and ethanol) with different molar concentrations. Furthermore, the geometrical structure was optimized using DFT simulation, and the vibration analysis and interaction energy were carried out. The simulated Raman spectra are in good agreement with the experiments. In addition, high-pressure Raman spectra of CS2 were obtained by diamond anvil cell technique (up to 9.19 GPa) and a pressure-induced phase transition was observed at 1.71 GPa. The results demonstrated that the pressure-induced polymerization phase transition of CS2 molecules causes the close packing and more orderly arrangement of molecules, resulting in the enhancement of FR coupling. HB and high pressure tune the FR of the CS2 molecule differently.

Keywords: Carbon disulfide; Fermi resonance; High pressure; Raman spectroscopy; Solution chemistry.