Naturally Occurring Allotropes of Carbon

Anal Chem. 2024 Jan 26;96(7):2968-2974. doi: 10.1021/acs.analchem.3c04662. Online ahead of print.

Abstract

Carbon is one of the most important chemical elements, forming a wide range of important allotropes, ranging from diamond over graphite to nanostructural materials such as graphene, fullerenes, and carbon nanotubes (CNTs). Especially these nanomaterials play an important role in technology and are commonly formed in laborious synthetic processes that often are of high energy demand. Recently, fullerenes and their building blocks (buckybowls) have been found in natural fossil materials formed under geological conditions. The question arises of how diverse nature can be in forming different types of natural allotropes of carbon. This is investigated here, using modern analytical methods such as ultrahigh-resolution mass spectrometry and transmission electron microscopy, which facilitate a detailed understanding of the diversity of natural carbon allotropes. Large fullerenes, fullertubes, graphene sheets, and double- and multiwalled CNTs together with single-walled CNTs were detected in natural heavy fossil materials while theoretical calculations on the B3LYP/6-31G(d) level of theory using the ORCA software package support the findings.