A High-Performance Strain Sensor for the Detection of Human Motion and Subtle Strain Based on Liquid Metal Microwire

Nanomaterials (Basel). 2024 Jan 21;14(2):231. doi: 10.3390/nano14020231.

Abstract

Flexible strain sensors have a wide range of applications, such as human motion monitoring, wearable electronic devices, and human-computer interactions, due to their good conformability and sensitive deformation detection. To overcome the internal stress problem of solid sensing materials during deformation and prepare small-sized flexible strain sensors, it is necessary to choose a more suitable sensing material and preparation technology. We report a simple and high-performance flexible strain sensor based on liquid metal nanoparticles (LMNPs) on a polyimide substrate. The LMNPs were assembled using the femtosecond laser direct writing technology to form liquid metal microwires. A wearable strain sensor from the liquid metal microwire was fabricated with an excellent gauge factor of up to 76.18, a good linearity in a wide sensing range, and a fast response/recovery time of 159 ms/120 ms. Due to these extraordinary strain sensing performances, the strain sensor can monitor facial expressions in real time and detect vocal cord vibrations for speech recognition.

Keywords: laser direct writing; liquid metal nanoparticles; microwire; strain sensor.