The Use of Diatoms in the Synthesis of New 3D Micro-Nanostructured Composites (SiO2/CaCO3/Corg/NdVO4NPs and SiO2/CaO/Corg/NdVO4NPs) Exhibiting an Intense Anti-Stokes Photoluminescence

Materials (Basel). 2024 Jan 19;17(2):490. doi: 10.3390/ma17020490.

Abstract

New 3D micro-nanostructured composite materials have been synthesised. These materials comprise SiO2/CaCO3/Corg/NdVO4NPs and SiO2/CaO/Corg/NdVO4NPs, exhibiting strong upconversion luminescence. The synthesis was accomplished by metabolically doping diatom cells with neodymium and vanadium. Subsequently, the biomass of these doped diatoms was subjected to pyrolysis at 800 °C. The morphology, structure, and physicochemical properties of the doped diatom biomass as well as dried (SiO2/CaCO3/Corg/NdVO4NPs) and pyrolysed (SiO2/CaO/Corg/NdVO4NPs) samples were characterised using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD), thermal analysis (TG), and fluorescence spectroscopy (FS). Studies have shown that the surface of diatom shells is covered with trigonal prismatic nanocrystallites (nanoparticles) of NdVO4 with dimensions of 30-40 nm, forming the crystallite clusters in the form of single-layer irregular flakes. The synthesised composites produced intense anti-Stokes fluorescent emission in the visible region under xenon lamp excitation in the near-infrared (λex = 800 nm) at room temperature in an ambient atmosphere. Such materials could be attractive for applications in solar spectrum conversion, optical sensing, biosensors, or photocatalysts.

Keywords: anti-Stokes photoluminescence; diatom biomass; metabolic insertion; neodymium vanadate nanoparticles.