Enhanced Estimation of Axial Compressive Strength for CFRP Based on Microscale Numerical Simulation and the Response Surface Method

Materials (Basel). 2024 Jan 19;17(2):478. doi: 10.3390/ma17020478.

Abstract

Compressive strength is one of the most important properties of carbon fiber reinforced plastics (CFRP). In this study, a new method for predicting the axial compressive strength of CFRP using the response surface method is developed. We focused on a microbuckling model to predict the compressive strength of unidirectional fiber composites. For the microbuckling model, axial shear properties are required. To obtain the compressive strength for various material properties, we perform individual shear tests and numerical simulations, but these require enormous computational costs and extended time. To address the issue of computational cost, in this study, we propose a new method to predict compressive strength using the response surface method. First, we perform shear simulation in a microscale fracture model for unidirectional CFRP with various parameters of the fiber and resin properties. Based on the results of the shear simulation, the response surface method is used to evaluate and develop prediction equations for the shear properties. This method allows for the study of the objective values of the parameters, without significant computational effort. By comparing both the results predicted from the response surface method (RSM) and the simulation results, we verify the reliability of the prediction equation. As a result, the coefficient of determination was higher than 94%, and the validity of the prediction method for the compressive strength of CFRP using the response surface method (RSM) developed in this study was confirmed. Additionally, we discuss the material properties that affect the compressive strength of composites comprised of fibers and resin. As a result, we rank the parameters as follows: fiber content, elastic modulus after resin yield, yield stress, and initial elastic modulus.

Keywords: CFRP; compressive strength; response surface method.

Grants and funding

This research received no external funding.