Designing and Testing an IoT Low-Cost PPP-RTK Augmented GNSS Location Device

Sensors (Basel). 2024 Jan 19;24(2):646. doi: 10.3390/s24020646.

Abstract

Nowadays, the availability of affordable multi-constellation multi-frequency receivers has broadened access to accurate positioning. The abundance of satellite signals coupled with the implementation of ground- and satellite-based correction services has unlocked the potential for achieving real-time centimetre-level positioning with low-cost instrumentation. Most of the current and future applications cannot exploit well-consolidated satellite positioning techniques such as Network Real Time Kinematic (RTK) and Precise Point Positioning (PPP); the former is inapplicable for large user bases due to the necessity of a two-way communication link between the user and the NRTK service provider, while the latter necessitates long convergence times that are not in keeping with kinematic application. In this context, the hybrid PPP-RTK technique has emerged as a potential solution to meet the demand for real-time, low-cost, accurate, and precise positioning. This paper presents an Internet of Things (IoT) GNSS device developed with low-cost hardware; it leverages a commercial PPP-RTK correction service which delivers corrections via IP. The main target is to obtain both horizontal and vertical decimetre-level accuracies in urban kinematic tests, along with other requisites such as solution availability and the provision of connection ports for interfacing an IoT network. A vehicle-borne kinematic test has been conducted to evaluate the device performance. The results show that (i) the IoT device can deliver horizontal and vertical positioning solutions at decimetre-level accuracy with the targeted solution availability, and (ii) the provided IoT ports are feasible for gathering the position solutions over an internet connection.

Keywords: GNSS; IoT; PPP-RTK; Point Perfect; high-accuracy positioning; low-cost hardware; mass-market navigation; u-blox ZED-F9P.