Concurrent Validity of the Ergotex Device for Measuring Low Back Posture

Bioengineering (Basel). 2024 Jan 20;11(1):98. doi: 10.3390/bioengineering11010098.

Abstract

Highlighting the crucial role of monitoring and quantifying lumbopelvic rhythm for spinal curvature, the Ergotex IMU, a portable, lightweight, cost-effective, and energy-efficient technology, has been specifically designed for the pelvic and lumbar area. This study investigates the concurrent validity of the Ergotex device in measuring sagittal pelvic tilt angle. We utilized an observational, repeated measures design with healthy adult males (mean age: 39.3 ± 7.6 y, body mass: 82.2 ± 13.0 kg, body height: 179 ± 8 cm), comparing Ergotex with a 3D optical tracking system. Participants performed pelvic tilt movements in anterior, neutral, and posterior conditions. Statistical analysis included paired samples t-tests, Bland-Altman plots, and regression analysis. The findings show minimal systematic error (0.08° overall) and high agreement between the Ergotex and optical tracking, with most data points falling within limits of agreement of Bland-Altman plots (around ±2°). Significant differences were observed only in the anterior condition (0.35°, p < 0.05), with trivial effect sizes (ES = 0.08), indicating that these differences may not be clinically meaningful. The high Pearson's correlation coefficients across conditions underscore a robust linear relationship between devices (r > 0.9 for all conditions). Regression analysis showed a standard error of estimate (SEE) of 1.1° with small effect (standardized SEE < 0.26 for all conditions), meaning that the expected average deviation from the true value is around 1°. These findings validate the Ergotex as an effective, portable, and cost-efficient tool for assessing sagittal pelvic tilt, with practical implications in clinical and sports settings where traditional methods might be impractical or costly.

Keywords: IMU; instrumentation; kinematics; posture; wearable.