An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors

Diagnostics (Basel). 2024 Jan 19;14(2):215. doi: 10.3390/diagnostics14020215.

Abstract

Computed tomography (CT)-guided thermal ablation is an emerging treatment method for lung tumors. Ablation needle path planning in preoperative diagnosis is of critical importance. In this work, we proposed an automatic needle path-planning method for thermal lung tumor ablation. First, based on the improved cube mapping algorithm, binary classification was performed on the surface of the bounding box of the patient's CT image to obtain a feasible puncture area that satisfied all hard constraints. Then, for different clinical soft constraint conditions, corresponding grayscale constraint maps were generated, respectively, and the multi-objective optimization problem was solved by combining Pareto optimization and weighted product algorithms. Finally, several optimal puncture paths were planned within the feasible puncture area obtained for the clinicians to choose. The proposed method was evaluated with 18 tumors of varying sizes (482.79 mm3 to 9313.81 mm3) and the automatically planned paths were compared and evaluated with manually planned puncture paths by two clinicians. The results showed that over 82% of the paths (74 of 90) were considered reasonable, with clinician A finding the automated planning path superior in 7 of 18 cases, and clinician B in 9 cases. Additionally, the time efficiency of the algorithm (35 s) was much higher than that of manual planning. The proposed method is expected to aid clinicians in preoperative path planning for thermal ablation of lung tumors. By providing a valuable reference for the puncture path during preoperative diagnosis, it may reduce the clinicians' workload and enhance the objectivity and rationality of the planning process, which in turn improves the effectiveness of treatment.

Keywords: Pareto optimization; improved cube mapping method; lung tumor; path planning; thermal ablation.