Impact of Shunt Placement on CSF Dynamics

Biomedicines. 2023 Dec 20;12(1):20. doi: 10.3390/biomedicines12010020.

Abstract

Background: CSF dynamics are disturbed in chronic hydrocephalus (NPH). We hypothesise that these alterations reflect a disturbance of intracranial compliance. The aim of our study is to investigate the variations in intracranial hydrodynamics in NPH after ventricular shunt surgery.

Patients and method: We included 14 patients with definite NPH. All patients improved after ventriculoperitoneal shunting. The patients underwent an analysis of intracranial haemodynamics by phase-contrast MRI (pcMRI) preoperatively, at 6 months postoperatively, and at 1 year postoperatively. We analysed the dynamics of intraventricular CSF at the level of the aqueduct of Sylvius (SVAQU) and CSF at the level of the high cervical subarachnoid spaces (SVCERV). We calculated the ratio between SVAQU and SVCERV, called CSFRATIO, which reflects the participation of intraventricular pulsatility in overall intracranial CSF pulsatility.

Results: SVAQU significantly (p = 0.003) decreased from 240 ± 114 μL/cc to 214 ± 157 μL/cc 6 months after shunt placement. Six months after shunt placement, SVCERV significantly (p = 0.007) decreased from 627 ± 229 μL/cc to 557 ± 234 μL/cc. Twelve months after shunt placement, SVCERV continued to significantly (p = 0.001) decrease to 496 ± 234 μL/cc. CSFRATIO was not changed by surgery.

Conclusions: CSF dynamics are altered by shunt placement and might be a useful marker of the shunt's effectiveness-especially if pressure values start to rise again. The detection of changes in CSF dynamics would require a reference postoperative pcMRI measurement for each patient.

Keywords: cerebrospinal fluid; hydrocephalus; hydrodynamic; phase-contrast MRI.

Grants and funding

This research received no external funding.