Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries

ACS Appl Energy Mater. 2023 Dec 28;7(2):414-426. doi: 10.1021/acsaem.3c02223. eCollection 2024 Jan 22.

Abstract

Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d']bis([1,2,3]triazole)-1,5-diide (-0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV-Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy.