A computational study of a light-driven artificial device: a third generation rotational photo-molecular motor in dilute solutions

Phys Chem Chem Phys. 2024 Feb 7;26(6):5399-5407. doi: 10.1039/d3cp05116a.

Abstract

A third-generation artificial photo-molecular motor, featuring two photo-switchable rotating moieties in connection with a pseudoasymmetric molecular centre, is investigated by combining quantum-mechanics (QM) algorithms with classical molecular dynamics (MD) propagators. In particular, in the present contribution we have addressed such a molecular motor in different rotational isomers following the experimental observations arising from the application of multiple spectroscopic techniques in dilute solutions. At first, we focused our attention on the reproduction of the UV/Vis absorption spectrum in two solvents (acetonitrile and cyclohexane) with different gradient-corrected density functional theory (B3LYP, Cam-B3LYP, PBE, PBE0) functionals in conjunction with the conductor-like and polarizable continuum model (C-PCM). Furthermore, we refined the absorption signals by combining a classical MD sampling at room-temperature with DFT-based electronic degrees of freedom to compute perturbed excitation wavelengths driven by thermal fluctuation and solvation effects. In this respect, we have modelled the investigated artificial motor within solution nanodroplets with solvent molecules treated contextually at atomistic level and via a dielectric and polarizable continuum model.