Microbial infection promotes amyloid pathology in a mouse model of Alzheimer's disease via modulating γ-secretase

Mol Psychiatry. 2024 Jan 25. doi: 10.1038/s41380-024-02428-5. Online ahead of print.

Abstract

Microbial infection as a type of environmental risk factors is considered to be associated with long-term increased risk of dementia, including Alzheimer's disease (AD). AD is characterized by two neuropathologically molecular hallmarks of hyperphosphorylated tau and amyloid-β (Aβ), the latter generated by several biochemically reactive enzymes, including γ-secretase. However, how infectious risk factors contribute to pathological development of the AD core molecules remains to be addressed. In this work, we utilized a modified herpes simplex virus type 1 (mHSV-1) and found that its hippocampal infection locally promotes Aβ pathology in 5 × FAD mice, the commonly used amyloid model. Mechanistically, we identified HSV-1 membrane glycoprotein US7 (Envelope gI) that interacts with and modulates γ-secretase and consequently facilitates Aβ production. Furthermore, we presented evidence that adenovirus-associated virus-mediated locally hippocampal overexpression of the US7 aggravates Aβ pathology in 5 × FAD mice. Collectively, these findings identify a herpesviral factor regulating γ-secretase in the development and progression of AD and represent a causal molecular link between infectious pathogens and neurodegeneration.