Well-designed lamellar reduced graphene oxide-based foam for high-performance solar-driven water purification

J Colloid Interface Sci. 2024 Apr 15:660:716-725. doi: 10.1016/j.jcis.2024.01.093. Epub 2024 Jan 19.

Abstract

Although solar steam generation is promising for seawater desalination, it is less effective in purifying wastewater with both salt/heavy metal ions and organic contaminants. It is thus imperative to develop multifunctional integrated solar-driven water purification systems with high solar-thermal evaporation and photocatalytic degradation efficiencies. Herein, a lamellar reduced graphene oxide (L-RGO) foam with the vertical lamellar structure is fabricated by bidirectional-freezing, lyophilization, and slight chemical reduction for water purification. The unique vertical lamellar structure not only accelerates upward transport of water for facilitating water evaporation but also endows the L-RGO foam with superb high elasticity for tuning the interlayer distance and varying interactions between the oxygen-containing groups and water molecules to adjust water energy state. As a result, the L-RGO foam achieves a superb water evaporation rate of 2.40 kg m-2 h-1 along with an energy efficiency of 95.3 % under the compressive strain of 44.7 % under 1-sun irradiation. Equally importantly, the decoration of L-RGO foam with polypyrrole is capable of efficiently degrading organic pollutants while retaining high solar steam generation performances, exhibiting great potential in the comprehensive treatment of various water sources for relieving freshwater crisis.

Keywords: Bidirectional-freezing; Lamellar foams; Reduced graphene oxide; Solar steam generation; Water evaporation.