Enhanced Photocatalytic Properties of All-Organic IDT-COOH/O-CN S-Scheme Heterojunctions Through π-π Interaction and Internal Electric Field

ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6367-6381. doi: 10.1021/acsami.3c16123. Epub 2024 Jan 25.

Abstract

Herein, we present a distinct methodology for the in situ electrostatic assembly method for synthesizing a conjugated (IDT-COOH)/oxygen-doped g-C3N4 (O-CN) S-scheme heterojunction. The electron delocalization effect due to π-π interactions between O-CN and self-assembled IDT-COOH favors interfacial charge separation. The self-assembled IDT-COOH/O-CN exhibits a broadened visible absorption to generate more charge carriers. The internal electric field between the IDT-COOH and the O-CN interface provides a directional charge-transfer channel to increase the utilization of photoinduced charge carriers. Moreover, the active species (O2-, h+, and 1O2) produced by IDT-COOH/O-CN under visible light play important roles in photocatalytic disinfection. The optimum 40% IDT-COOH/O-CN can kill 7-log of methicillin-resistant Staphylococcus aureus (MRSA) cells in 2 h and remove 88% tetracycline (TC) in 5 h, while O-CN only inactivates 1-log of MRSA cells and degrades 40% TC. This work contributes to a promising method to fabricate all-organic g-C3N4-based S-scheme heterojunction photocatalysts with a wide range of optical responses and enhanced exciton dissociation.

Keywords: all organic S-scheme heterojunction; internal electric field; photocatalytic disinfection and degradation; self-assembled IDT-COOH/O–CN; π−π interaction.