Improved Expression of a Thermostable GH18 Bacterial Chitinase in Two Different Escherichia coli Strains and Its Potential Use in Plant Protection and Biocontrol of Phytopathogenic Fungi

Mol Biotechnol. 2024 Jan 24. doi: 10.1007/s12033-023-01041-1. Online ahead of print.

Abstract

Chitinases are enzymes that can break down chitin, a major component of the exoskeleton of insects and fungi. This feature makes them potential biopesticides in agriculture since they are considered a safe and environmentally friendly alternative to synthetic pesticides. In this work, we performed a comparative study between two different bacterial expression strains to produce a recombinant chitinase with improved stability. Escherichia coli strains Origami B and BL21 (DE3) were selected for their distinct cytosolic environment to express BhChitA chitinase of Bacillus halodurans C-125 and to investigate the role of disulfide bond formation and proper folding on its stability and activity. Expression of the recombinant BhChitA in bacterial strain containing oxidative cytosol (Origami B) improved its activity and stability. Although both expression systems have comparable biochemical properties (temperature range 20-80 °C and pH spectrum 3-10), BhChitA expressed in Origami strain seems more stable than expressed in BL21. Furthermore, the optimal expression conditions of the recombinant BhChitA has been carried out at 30 °C during 6 h for the Origami strain, against 20 °C during 2 h for BL21. On the other hand, no significant differences were detected between the two enzymes when the effect of metal ions was tested. These findings correlate with the analysis of the overall structure of BhChitA. The model structure permitted to localize disulfide bond, which form a stable connection between the substrate-binding residues and the hydrophobic core. This link is required for efficient binding of the chitin insertion domain to the substrate. BhChitA exhibited in vitro antifungal effect against phytopathogenic fungi and suppressed necrosis of Botrytis cinerea on detached tomato leaves. In vitro assays showed the influence of BhChitA on growth suppression of Botrytis cinerea (53%) Aspergillus niger (65%), Fusarium graminearum (25%), and Fusarium oxysporum (34%). Our results highlight the importance of the bacterial expression system with oxidative cytosol in producing promising biopesticides that can be applied for post-harvest processing and crop protection.

Keywords: Biopesticide; Disulfide bonds; GH18 chitinases; Molecular modeling; Plant protection.