C-to-G editing generates double-strand breaks causing deletion, transversion and translocation

Nat Cell Biol. 2024 Feb;26(2):294-304. doi: 10.1038/s41556-023-01342-2. Epub 2024 Jan 23.

Abstract

Base editors (BEs) introduce base substitutions without double-strand DNA cleavage. Besides precise substitutions, BEs generate low-frequency 'stochastic' byproducts through unclear mechanisms. Here, we performed in-depth outcome profiling and genetic dissection, revealing that C-to-G BEs (CGBEs) generate substantial amounts of intermediate double-strand breaks (DSBs), which are at the centre of several byproducts. Imperfect DSB end-joining leads to small deletions via end-resection, templated insertions or aberrant transversions during end fill-in. Chromosomal translocations were detected between the editing target and off-targets of Cas9/deaminase origin. Genetic screenings of DNA repair factors disclosed a central role of abasic site processing in DSB formation. Shielding of abasic sites by the suicide enzyme HMCES reduced CGBE-initiated DSBs, providing an effective way to minimize DSB-triggered events without affecting substitutions. This work demonstrates that CGBEs can initiate deleterious intermediate DSBs and therefore require careful consideration for therapeutic applications, and that HMCES-aided CGBEs hold promise as safer tools.

MeSH terms

  • Alkanesulfonic Acids*
  • CRISPR-Cas Systems
  • DNA Breaks, Double-Stranded*
  • DNA End-Joining Repair
  • DNA Repair / genetics
  • Humans
  • Translocation, Genetic*

Substances

  • BES
  • Alkanesulfonic Acids