Unravelling the removal mechanisms of trivalent arsenic by sulfidated nanoscale zero-valent iron: The crucial role of reactive oxygen species and the multiple effects of citric acid

Sci Total Environ. 2024 Mar 15:916:170275. doi: 10.1016/j.scitotenv.2024.170275. Epub 2024 Jan 21.

Abstract

The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 μM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.

Keywords: Citric acid; Oxidation mechanism; Reactive oxygen species; Sulfidated nanoscale zero-valent iron; Trivalent arsenic.