Prediction of Novel Natural Small Molecules From Schinus molle as an Inhibitor of PI3K Protein Target in Cancer Cells Using In Silico Screening

Cureus. 2023 Dec 20;15(12):e50863. doi: 10.7759/cureus.50863. eCollection 2023 Dec.

Abstract

Introduction Cancer continues to pose a significant challenge in medical research. Phytochemicals derived from plants have emerged as a promising avenue for pioneering drug discovery due to their potential for reduced toxicity. The phosphatidylinositol 3-kinase (PI3K) pathway has gained recognition as a pivotal signaling pathway with implications across multiple facets of cancer initiation and progression. This study focuses on the virtual screening of phytochemicals from Schinus molle, evaluating their potential as inhibitors of PI3K, a crucial target in cancer therapy. Methods and materials The present study involved a comprehensive in silico screening of phytochemicals derived from S. molle. The screening process encompassed various parameters, such as drug-likeness, pharmacokinetics, molecular docking, toxicity analysis, bioavailability assessment, and molecular target exploration. The primary objective of this systematic approach was to identify potential lead compounds. The study aimed to provide a detailed understanding of the molecular properties of the phytochemicals and their potential as drug candidates. Results Upon analyzing 18 compounds, two compounds were noteworthy. Beta-spathulene and kaempferol demonstrated significant affinity for PI3K and favorable attributes concerning drug-likeness, pharmacokinetics, and bioavailability. Conclusion While our computational investigation lays a promising foundation, it is essential to emphasize that further experimental studies, including in vitro and in vivo experiments, are imperative to validate the action of these lead compounds.

Keywords: cancer; mortality; novel compounds; pi3k; schinus molle; therapeutics.