Microstress for metal halide perovskite solar cells: from source to influence and management

Nanoscale. 2024 Feb 8;16(6):2765-2788. doi: 10.1039/d3nr05264h.

Abstract

The power conversion efficiency of metal halide perovskite solar cells (PSCs) has increased dramatically in recent years, but there are still major bottlenecks in the commercial application of such materials, including intrinsic instability caused by external stimuli such as water, oxygen, and radiation, as well as local stress generated inside the perovskite and external stress caused by poor interlayer contact. However, some crucial sources of instability cannot be overcome by conventional encapsulation engineering. Among them, the tensile strain can weaken the chemical bonds in the perovskite lattice, thereby reducing the defects formation energy and activation energy of ion migration and accelerating the degradation rate of the perovskite crystal. This review expounds the latest in-depth understanding of microstrain in perovskite film from the thermodynamic sources and influences on the perovskite physicochemical structure and photoelectric performance. Furthermore, it also summarizes the effective strategies for strain regulation and interlayer contact performance improvement, which are conducive to the improvement of photovoltaic performance and internal stability of PSCs. Finally, we present a prospective outlook on how to achieve more stable and higher efficiency PSCs through strain engineering.

Publication types

  • Review