Changes in Microbiota Composition during the Anaerobic Digestion of Macroalgae in a Three-Stage Bioreactor

Microorganisms. 2024 Jan 5;12(1):109. doi: 10.3390/microorganisms12010109.

Abstract

The use of microalgae as a raw material for biogas production is promising. Macroalgae were mixed with cattle manure, wheat straw, and an inoculant from sewage sludge. Mixing macroalgae with co-substrates increased biogas and methane yield. The research was carried out using a three-stage bioreactor. During biogas production, the dynamics of the composition of the microbiota in the anaerobic chamber of the bioreactor was evaluated. The microbiota composition at different organic load rates (OLRs) of the bioreactor was evaluated. This study also demonstrated that in a three-stage bioreactor, a higher yield of methane in biogas was obtained compared to a single-stage bioreactor. It was found that the most active functional pathway of methane biosynthesis is PWY-6969, which proceeds via the TCA cycle V (2-oxoglutarate synthase). Microbiota composition and methane yield depended on added volatile solids (VSadded). During the research, it was found that after reducing the ORL from 2.44 to 1.09 kg VS/d, the methane yield increased from 175.2 L CH4/kg VSadded to 323.5 L CH4/kg VSadded.

Keywords: biogas; macroalgae; methane; microbiota; three-stage bioreactor.