6-Shogaol Ameliorates Liver Inflammation and Fibrosis in Mice on a Methionine- and Choline-Deficient Diet by Inhibiting Oxidative Stress, Cell Death, and Endoplasmic Reticulum Stress

Molecules. 2024 Jan 15;29(2):419. doi: 10.3390/molecules29020419.

Abstract

Non-alcoholic steatohepatitis (NASH) is becoming an increasingly serious global health threat, distinguished by hepatic lipid accumulation, inflammation, and fibrosis. There is a lack of approved pharmaceutical interventions for this disease, highlighting the urgent need for effective treatment. This study explores the hepatoprotective potential of 6-shogaol, a natural compound derived from ginger, in a methionine- and choline-deficient (MCD) dietary mouse model of NASH. Male C57BL/6J mice were subjected to the MCD diet for 4 weeks to induce NASH, with concurrent intraperitoneal administration of 6-shogaol (20 mg/kg) three times a week. While 6-shogaol did not impact body weight, liver weight, or hepatic lipid accumulation, it effectively mitigated liver injury, inflammation, and fibrosis in MCD diet-fed mice. Mechanistically, 6-shogaol inhibited lipid and DNA oxidation, restored hepatic glutathione levels, and regulated the expression of pro-oxidant and antioxidant enzymes. Furthermore, 6-shogaol inhibited apoptosis and necroptosis, as indicated by a decrease in TUNEL-stained cells and downregulation of apoptosis- and necroptosis-associated proteins. Additionally, 6-shogaol alleviated endoplasmic reticulum (ER) stress, as demonstrated by decreased expression of molecules associated with unfolded protein response pathways. These findings underscore the potential of 6-shogaol as a therapeutic intervention for NASH by targeting pathways related to oxidative stress, cell death, and ER stress.

Keywords: 6-shogaol; fibrosis; inflammation; non-alcoholic steatohepatitis.

MeSH terms

  • Animals
  • Catechols*
  • Cell Death
  • Choline
  • Diet
  • Endoplasmic Reticulum Stress
  • Fibrosis
  • Hepatitis*
  • Inflammation / drug therapy
  • Lipids
  • Liver Cirrhosis / drug therapy
  • Liver Cirrhosis / etiology
  • Male
  • Methionine
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / etiology
  • Oxidative Stress
  • Racemethionine

Substances

  • Methionine
  • shogaol
  • Racemethionine
  • Choline
  • Lipids
  • Catechols